\(\int (a+\frac {b}{x^2})^p (c+\frac {d}{x^2})^q \, dx\) [274]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 79 \[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=\left (a+\frac {b}{x^2}\right )^p \left (1+\frac {b}{a x^2}\right )^{-p} \left (c+\frac {d}{x^2}\right )^q \left (1+\frac {d}{c x^2}\right )^{-q} x \operatorname {AppellF1}\left (-\frac {1}{2},-p,-q,\frac {1}{2},-\frac {b}{a x^2},-\frac {d}{c x^2}\right ) \]

[Out]

(a+b/x^2)^p*(c+d/x^2)^q*x*AppellF1(-1/2,-p,-q,1/2,-b/a/x^2,-d/c/x^2)/((1+b/a/x^2)^p)/((1+d/c/x^2)^q)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {382, 525, 524} \[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=x \left (a+\frac {b}{x^2}\right )^p \left (\frac {b}{a x^2}+1\right )^{-p} \left (c+\frac {d}{x^2}\right )^q \left (\frac {d}{c x^2}+1\right )^{-q} \operatorname {AppellF1}\left (-\frac {1}{2},-p,-q,\frac {1}{2},-\frac {b}{a x^2},-\frac {d}{c x^2}\right ) \]

[In]

Int[(a + b/x^2)^p*(c + d/x^2)^q,x]

[Out]

((a + b/x^2)^p*(c + d/x^2)^q*x*AppellF1[-1/2, -p, -q, 1/2, -(b/(a*x^2)), -(d/(c*x^2))])/((1 + b/(a*x^2))^p*(1
+ d/(c*x^2))^q)

Rule 382

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[(a + b/x^n)^p*((c +
 d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 525

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {\left (a+b x^2\right )^p \left (c+d x^2\right )^q}{x^2} \, dx,x,\frac {1}{x}\right ) \\ & = -\left (\left (\left (a+\frac {b}{x^2}\right )^p \left (1+\frac {b}{a x^2}\right )^{-p}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {b x^2}{a}\right )^p \left (c+d x^2\right )^q}{x^2} \, dx,x,\frac {1}{x}\right )\right ) \\ & = -\left (\left (\left (a+\frac {b}{x^2}\right )^p \left (1+\frac {b}{a x^2}\right )^{-p} \left (c+\frac {d}{x^2}\right )^q \left (1+\frac {d}{c x^2}\right )^{-q}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {b x^2}{a}\right )^p \left (1+\frac {d x^2}{c}\right )^q}{x^2} \, dx,x,\frac {1}{x}\right )\right ) \\ & = \left (a+\frac {b}{x^2}\right )^p \left (1+\frac {b}{a x^2}\right )^{-p} \left (c+\frac {d}{x^2}\right )^q \left (1+\frac {d}{c x^2}\right )^{-q} x F_1\left (-\frac {1}{2};-p,-q;\frac {1}{2};-\frac {b}{a x^2},-\frac {d}{c x^2}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.32 \[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=-\frac {\left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q x \left (1+\frac {a x^2}{b}\right )^{-p} \left (1+\frac {c x^2}{d}\right )^{-q} \operatorname {AppellF1}\left (\frac {1}{2}-p-q,-p,-q,\frac {3}{2}-p-q,-\frac {a x^2}{b},-\frac {c x^2}{d}\right )}{-1+2 p+2 q} \]

[In]

Integrate[(a + b/x^2)^p*(c + d/x^2)^q,x]

[Out]

-(((a + b/x^2)^p*(c + d/x^2)^q*x*AppellF1[1/2 - p - q, -p, -q, 3/2 - p - q, -((a*x^2)/b), -((c*x^2)/d)])/((-1
+ 2*p + 2*q)*(1 + (a*x^2)/b)^p*(1 + (c*x^2)/d)^q))

Maple [F]

\[\int \left (a +\frac {b}{x^{2}}\right )^{p} \left (c +\frac {d}{x^{2}}\right )^{q}d x\]

[In]

int((a+b/x^2)^p*(c+d/x^2)^q,x)

[Out]

int((a+b/x^2)^p*(c+d/x^2)^q,x)

Fricas [F]

\[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=\int { {\left (a + \frac {b}{x^{2}}\right )}^{p} {\left (c + \frac {d}{x^{2}}\right )}^{q} \,d x } \]

[In]

integrate((a+b/x^2)^p*(c+d/x^2)^q,x, algorithm="fricas")

[Out]

integral(((a*x^2 + b)/x^2)^p*((c*x^2 + d)/x^2)^q, x)

Sympy [F(-1)]

Timed out. \[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=\text {Timed out} \]

[In]

integrate((a+b/x**2)**p*(c+d/x**2)**q,x)

[Out]

Timed out

Maxima [F]

\[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=\int { {\left (a + \frac {b}{x^{2}}\right )}^{p} {\left (c + \frac {d}{x^{2}}\right )}^{q} \,d x } \]

[In]

integrate((a+b/x^2)^p*(c+d/x^2)^q,x, algorithm="maxima")

[Out]

integrate((a + b/x^2)^p*(c + d/x^2)^q, x)

Giac [F]

\[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=\int { {\left (a + \frac {b}{x^{2}}\right )}^{p} {\left (c + \frac {d}{x^{2}}\right )}^{q} \,d x } \]

[In]

integrate((a+b/x^2)^p*(c+d/x^2)^q,x, algorithm="giac")

[Out]

integrate((a + b/x^2)^p*(c + d/x^2)^q, x)

Mupad [F(-1)]

Timed out. \[ \int \left (a+\frac {b}{x^2}\right )^p \left (c+\frac {d}{x^2}\right )^q \, dx=\int {\left (a+\frac {b}{x^2}\right )}^p\,{\left (c+\frac {d}{x^2}\right )}^q \,d x \]

[In]

int((a + b/x^2)^p*(c + d/x^2)^q,x)

[Out]

int((a + b/x^2)^p*(c + d/x^2)^q, x)